
CHEM 409: Quantum Chemistry II                         L2 P1T0 (2 Credits) 

Quantum chemistry including quantum mechanics and statistical thermodynamics, relationships 

between the various bonding theories-balance bond, molecular orbital, LCAO and non- paring 

spatial theory, postulates of the quantum theory. The Schrödinger equation and the particle in a 

box problem, treatment of the hydrogen molecule ion, and many electron atoms, perturbation and 

variation methods 

Chapter One 

1.1 Bond Theories 

Valence Bond theory describes covalent bond formation as well as the electronic structure of 

molecules. The theory assumes that electrons occupy atomic orbitals of individual atoms within a 

molecule, and that the electrons of one atom are attracted to the nucleus of another atom. This 

attraction increases as the atoms approach one another until the atoms reach a minimum distance 

where the electron density begins to cause repulsion between the two atoms. This electron 

density at the minimum distance between the two atoms is where the lowest potential energy is 

acquired, and it can be considered to be what holds the two atoms together in a chemical bond. 

Valence bond (VB) theory assumes that all bonds are localized bonds formed between two atoms 

by the donation of an electron from each atom. This is actually an invalid assumption because 

many atoms bond using delocalized electrons 

In chemistry, valence bond (VB) theory is one of two basic theories, along with molecular 

orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain 

chemical bonding. It focuses on how the atomic orbitals of the dissociated atoms combine to give 

individual chemical bonds when a molecule is formed. In contrast, molecular orbital theory has 

orbitals that cover the whole molecule 

1.2 LCAO 

A linear combination of atomic orbitals or LCAO is a quantum superposition of atomic 

orbitals and a technique for calculating molecular orbitals in quantum chemistry. In quantum 

mechanics, electron configurations of atoms are described as wave functions. In mathematical 

sense, these wave functions are the basis set of functions, which describe the electrons of a given 

atom. In chemical reactions, orbital wave functions are modified, i.e. the electron cloud shape is 

changed, according to the type of atoms participating in the chemical bond. 

It was introduced in 1929 by Sir John Lennard-Jones with the description of bonding in the 

diatomic molecules of the first main row of the periodic table, but had been used earlier by Linus 

Pauling for H2
+. 

A mathematical description follows. 
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An initial assumption is that the number of molecular orbitals is equal to the number of atomic 

orbitals included in the linear expansion. In a sense, n atomic orbitals combine to form n 

molecular orbitals, which can be numbered i = 1 to n and which may not all be the same. The 

expression (linear expansion) for the i th molecular orbital would be: 

 

or 

 

where (phi) is a molecular orbital represented as the sum of n atomic orbitals (chi), each 

multiplied by a corresponding coefficient , and r (numbered 1 to n) represents which atomic 

orbital is combined in the term. The coefficients are the weights of the contributions of the n 

atomic orbitals to the molecular orbital. The Hartree–Fock procedure is used to obtain the 

coefficients of the expansion. 

The orbitals are thus expressed as linear combinations of basis functions, and the basis functions 

are one-electron functions centered on nuclei of the component atoms of the molecule. The 

atomic orbitals used are typically those of hydrogen-like atoms since these are known 

analytically i.e. Slater-type orbitals but other choices are possible like Gaussian functions from 

standard basis sets. 

By minimizing the total energy of the system, an appropriate set of coefficients of the linear 

combinations is determined. This quantitative approach is now known as the Hartree–Fock 

method. However, since the development of computational chemistry, the LCAO method often 

refers not to an actual optimization of the wave function but to a qualitative discussion which is 

very useful for predicting and rationalizing results obtained via more modern methods. In this 

case, the shape of the molecular orbitals and their respective energies are deduced approximately 

from comparing the energies of the atomic orbitals of the individual atoms (or molecular 

fragments) and applying some recipes known as level repulsion and the like. The graphs that are 

plotted to make this discussion clearer are called correlation diagrams. The required atomic 

orbital energies can come from calculations or directly from experiment via Koopmans' theorem. 

1.3 Principles of Molecular Orbital Theory 

In molecules, atomic orbitals combine to form molecular orbitals which surround the molecule. 

Similar to atomic orbitals, molecular orbitals are wave functions giving the probability of finding 

an electron in certain regions of a molecule. Each molecular orbital can only have 2 electrons, 

each with an opposite spin. The molecular orbitals and their energy ordering the ground state 

configuration is found by applying the Pauli principle, the Aufbau principle and Hund's rule just 

as with atoms. 

The principles to apply when forming pictorial molecular orbitals from atomic orbitals are 

summarized in the table below: 
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Figure 2 (below) shows how bonding and antibonding σ orbitals can be formed by combining s 

orbitals in-phase (bonding, bottom) and out-of-phase (antibonding, top). If the atomic orbitals are 

combined with the same phase they interfere constructively and a bonding orbital is 

formed.  Bonding molecular orbitals have lower energy than the atomic orbitals from which they 

were formed.  The lowering of the energy is attributed to the increase in shielding of the nuclear 

repulsion because of the increase in electron density between the nuclei.  If the atomic orbitals 

are combined with different phases, they interfere destructively and an antibonding molecular 

orbital is formed. Antibonding molecular orbitals have a higher energy than the atomic orbitals 

from which they were formed. The higher energy is attributed to the reduced shielding of the 

nuclear repulsion because of the lower electron probability density between the nuclei. 

  

Principle Details/Examples 

Total number of molecular orbitals 

is equal to the total number of 

atomic orbitals used to make them. 

The molecule H2 is composed of two H atoms. Both 

H atoms have a 1s orbital, so when bonded together, there 

are therefore two molecular orbitals.   

Bonding molecular orbitals  are 

lower energy than the atomic 

orbitals from which they were 

formed. 

  

  

Antibonding molecular orbitals are 

higher energy than the atomic 

orbitals from which they were 

formed. 

Electrons in bonding molecular orbitals help stabilize a 

system of atoms since less energy is associated with bonded 

atoms as opposed to a system of unbound atoms.  Bonding 

orbitals are formed by in-phase combinations of atomic 

orbitals and increase the electron density between the atoms 

(see figure 2 below) 

  

Electrons in antibonding molecular orbitals cause a system to 

be destabilized since more energy is associated with bonded 

atoms than that of a system of unbound atoms. Antibonding 

orbitals are formed by out-of-phase combinations of atomic 

orbitals and decrease the electron density between atoms (see 

figure 2 below).  

Following both the Pauli exclusion 

principle and Hund's rule, electrons 

fill in orbitals of increasing energy. 

 Electrons fill orbitals with the lowest energy first. No more 

than 2 electrons can occupy 1 molecular orbital at a time. 

Furthermore, all orbitals at an energy level must be filled 

with one electron before they can be paired.  (see figure 3 

below) 

Molecular orbitals are best formed 

when composed of Atomic 

orbitals of like energies 

. 

When Li2 forms the two lowest energy orbitals are the pair of 

bonding and antibonding orbitals formed from the two 

possible combinations of the 1s on each atom.  The 2s 

orbitals combine primarily with each other to form another 

pair of bonding and antibonding orbitals at a higher energy. 
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Figure 2: Combining hydrogen-like s orbitals to generate bonding (bottom) and antibonding (top) 

orbitals. The dark dot represents the location of the nucleus. Note the decrease in electron density 

between the nuclei in the antibonding orbital. 

σ  Bonds 

Molecular orbitals that are symmetrical about the axis of the bond are called sigma molecular 

orbitals, often abbreviated by the Greek letter σ  . Figure 2 shows the 1s orbitals of 2 Hydrogen 

atoms forming sigma orbitals. There are two types of sigma orbitals formed, antibonding sigma 

orbitals (abbreviated σ ∗   ), and bonding sigma orbitals (abbreviated σ ). In sigma bonding 

orbitals, the in phase atomic orbitals overlap causing an increase in electron density along the 

bond axis. Where the atomic orbitals overlap, there is an increase in electron density and 

therefore an increase in the intensity of the negative charge. This increase in negative charge 

causes the nuclei to be drawn closer together. In sigma antibonding orbitals (σ ∗   ), the out of 

phase 1s orbitals interfere destructively which results in a low electron density between the 

nuclei as seen on the top of the diagram.  

The diagram below (figure 3) is a representation of the energy levels of the bonding and 

antibonding orbitals formed in the hydrogen molecule.  Two molecular orbitals were formed: one 

antibonding (σ∗) and one bonding (σ).The two electrons in the hydrogen molecule have 

antiparallel spins. Notice that the σ∗   orbital is empty and has a higher energy than the σ  orbital.  
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Figure 3: An MO energy level diagram for H2. The up and down arrows represent electrons that 

are spin up or spin down. 

Sigma bonding orbitals and antibonding orbitals can also be formed between p orbitals (figure 

4). Notice that the orbitals have to be in phase in order to form bonding orbitals. Sigma 

molecular orbitals formed by p orbitals are often differentiated from other types of sigma orbitals 

by adding the subscript p below it. So the antibonding orbital shown in the diagram below would 

be σ*p. 

 

  

 

Figure 4: The formation of a σ bonding and antibonding orbital using p-orbitals. 

π  Bonds 
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The π  bonding is a side to side overlap of orbitals, which then causes there to be no electron 

density along the axis, but there is density above and below the axis. The diagram below (figure 

5) shows a π  antibonding molecular orbital and a π  bonding molecular orbital. 

 

Figure 5: The side on overlap of p orbitals to form pi  bonding and antibonding orbitals. Note 

that there is a second set of p orbitals sticking in and out of the image that can combine in the 

same way. (see cartoons immediately below) 

2py Orbitals 

 



The two 2py atomic orbitals overlap in parallel to form two π  molecular orbitals which are 

asymmetrical about the axis of the bond. 

2pz orbitals  

 

The two 2pz orbitals overlap to create another pair of pi 2p and pi *2p molecular orbitals. The 

2pz-2pz overlap is similar to the 2py-2py overlap because it is just the orbitals of the 2pz rotated 

90 degrees about the axis. The new molecular orbitals have the same potential energies as those 

from the 2py-2py overlap.  

In summary the three pairs of p orbitals can combine to form one set of \sigma\ orbitals and two 

sets of \pi\ orbitals. 

Bond Orders and Stability of Molecules 

Bond Order indicates the strength of the bond with the greater the bond order, the stronger the 

bond.  

Bond Order=12 (a−b)  

where 

• a  is the number of electrons in bonding molecular orbitals and 

• b  is the number of electrons in antibondng molecular orbitals. 

If the bond order is zero, then no bonds are produced and the molecule is not stable (for example 

He2   ). If the Bond Order is 1, then it is a single covalent bond. The higher the Bond Order, the 
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more stable the molecule is. An advantage of Molecular Orbital Theory when it comes to Bond 

Order is that it can more accurately describe partial bonds (for example in H2
+, where the Bond 

Order=1/2), than Lewis Structures 

1.4 Comparison of Theories 

Valence bond theory  

1- In valence bond theory, two atomic orbitals give an inter-atomic orbital obtained by space 

filling two unpaired electrons, one being in each of the two atomic orbitals.  

2- The resulting molecule, consist of atoms and retain their individual character.  

3- Atomic orbitals are mono-centric.  

Molecular orbital theory  

1- In molecular orbital theory, molecular orbits are formed by linear combination of atomic 

orbitals ) method.  

2- Atomic orbitals of the resulting molecule lose their individual identities.  

3- Molecular orbitals are poly-centric 

In LCAO, atomic orbitals are superimposed on each other 

Chapter Two 

2.1 Quantum Mechanics 
 

Quantum mechanics is the theoretical framework which describes the behavior of matter on the 

atomic scale 

2.2 Schrodinger Equation 

The Schrodinger equation plays the role of Newton's laws and conservation of energy in classical 

mechanics - i.e., it predicts the future behavior of a dynamic system. It is a wave equation in 

terms of the wave function which predicts analytically and precisely the probability of events or 

outcome. The detailed outcome is not strictly determined, but given a large number of events, the 

Schrodinger equation will predict the distribution of results.  
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The kinetic and potential energies are transformed into the Hamiltonian which acts upon the 

wave function to generate the evolution of the wave function in time and space. The Schrodinger 

equation gives the quantized energies of the system and gives the form of the wave function so 

that other properties may be calculated 

2.3 Free particle approach to the Schrodinger equation  

Though the Schrodinger equation cannot be derived, it can be shown to be consistent with 

experiment. The most valid test of a model is whether it faithfully describes the real world. The 

wave nature of the electron has been clearly shown in experiments like the Davisson-Germer 

experiment. This raises the question "What is the nature of the wave?". We reply, in retrospect, 

that the wave is the wave function for the electron. Starting with the expression for a traveling 

wave in one dimension, the connection can be made to the Schrodinger equation. This process 

makes use of the de Broglie (ƛ= h/p) relationship between wavelength and momentum and the 

Planck relationship between frequency and energy. 
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It is easier to show the relationship to the Schrodinger equation by generalizing this wave 

function to a complex exponential form using the Euler relationship. This is the standard form 

for the free particle wave function. 

 

If we now take the partial derivatives of this wave function with respect to position and time, we 

can show that these derivatives are related to momentum and energy respectively. 

 

When an operation on a function gives back a constant times the function, that constant is called 

an eigenvalue, and the function is an eigen function. The above relationships can be rearranged 

as follows. 

 

In this kind of fashion, quantum mechanical "operators" can be developed for relevant physical 

observables. 

The connection to the Schrodinger equation can be made by examining wave and particle 

expressions for energy: 
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Asserting the equivalence of these two expressions for energy and putting in the quantum 

mechanical operators for both brings us to the Schrodinger equation 

 

2.4 Particle in a box 

Some trajectories of a particle in a box according to Newton's laws of classical mechanics (A), 

and according to the Schrödinger equation of quantum mechanics (B-F). In (B-F), the horizontal 

axis is position, and the vertical axis is the real part (blue) and imaginary part (red) of the 

wavefuntion. The states (B,C,D) are energy eigenstates, but (E,F) are not. In quantum mechanics, 

the particle in a box model (also known as the infinite potential well or the infinite square 

well) describes a particle free to move in a small space surrounded by impenetrable barriers. The 

model is mainly used as a hypothetical example to illustrate the differences between classical and 

quantum systems. In classical systems, for example a ball trapped inside a large box, the particle 

can move at any speed within the box and it is no more likely to be found at one position than 

another. However, when the well becomes very narrow (on the scale of a few nanometers), 

quantum effects become important. The particle may only occupy certain positive energy levels. 

Likewise, it can never have zero energy, meaning that the particle can never "sit still". 

Additionally, it is more likely to be found at certain positions than at others, depending on its 

energy level. The particle may never be detected at certain positions, known as spatial nodes. 

The particle in a box model provides one of the very few problems in quantum mechanics which 

can be solved analytically, without approximations. This means that the observable properties of 

the particle (such as its energy and position) are related to the mass of the particle and the width 

of the well by simple mathematical expressions. Due to its simplicity, the model allows insight 

into quantum effects without the need for complicated mathematics. It is one of the first quantum 

mechanics problems taught in undergraduate physics courses, and it is commonly used as an 

approximation for more complicated quantum systems 
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2.5 One-dimensional solution 

 

The barriers outside a one-dimensional box have infinitely large potential, while the interior of the box 

has a constant, zero potential. 

The simplest form of the particle in a box model considers a one-dimensional system. Here, the 

particle may only move backwards and forwards along a straight line with impenetrable barriers 

at either end.[1] The walls of a one-dimensional box may be visualized as regions of space with an 

infinitely large potential energy. Conversely, the interior of the box has a constant, zero potential 

energy.[2] This means that no forces act upon the particle inside the box and it can move freely in 

that region. However, infinitely large forces repel the particle if it touches the walls of the box, 

preventing it from escaping. The potential energy in this model is given as 

 

where is the length of the box and is the position of the particle within the box. 

2.6 Wave functions 

In quantum mechanics, the wave function gives the most fundamental description of the behavior 

of a particle; the measurable properties of the particle (such as its position, momentum and 

energy) may all be derived from the wave function. The wave function can be found by 

solving the Schrödinger equation for the system 

 

where is the reduced Planck constant, is the mass of the particle, is the imaginary unit and 

is time. 

Inside the box, no forces act upon the particle, which means that the part of the wave function 

inside the box oscillates through space and time with the same form as a free particle:  
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 (1) 

where and are arbitrary complex numbers. The frequency of the oscillations through space 

and time are given by the wavenumber and the angular frequency respectively. These are 

both related to the total energy of the particle by the expression 

 

which is known as the dispersion relation for a free particle. Here one must notice that now, 

since the particle is not entirely free but under the influence of a potential (the potential V 

described above), the energy of the particle given above is not the same thing as where p is 

the momentum of the particle, and thus the wavenumber k above actually describes the energy 

states of the particle, not the momentum states (id est, it turns out that the momentum of the 

particle is not given by ). In this sense, it is quite dangerous to call the number k a 

wavenumber, since it is not related to momentum like "wavenumber" usually is. The rationale 

for calling k the wavenumber is that it enumerates the number of crests that the wavefuntion has 

inside the box, and in this sense it is a wavenumber. This in discrepancy can be seen more clearly 

below, when we find out that the energy spectrum of the particle is discrete (only discrete values 

of energy is allowed) but the momentum spectrum is continuous (momentum can vary 

continuously) and in particular, the relation for the energy and momentum of the 

particle does not hold. As said above, the reason this relation between energy and momentum 

does not hold is that the particle is not free, but there is a potential V in the system, and the 

energy of the particle is , where T is the kinetic and V the potential energy. 

 

Initial wavefunctions for the first four states in a one-dimensional particle in a box 

The size (or amplitude) of the wavefunction at a given position is related to the probability of 

finding a particle there by . The wave function must therefore vanish 
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everywhere beyond the edges of the box. Also, the amplitude of the wavefunction may not 

"jump" abruptly from one point to the next.[1] These two conditions are only satisfied by wave 

functions with the form 

 

where is a positive integer. Usually in quantum mechanics it is also demanded that the 

derivative of the wavefuntion in addition to the wavefuntion itself be continuous; here this 

demand would lead to the only solution being the constant zero function, which is not what we 

desire, so we give up this demand (as this system with infinite potential can be regarded as a 

nonphysical abstract limiting case, we can treat it as such and "bend the rules"). Note that giving 

up this demand means that the wavefuntion is not a differentiable function at the boundary of the 

box, and thus it can be said that the wavefuntion does not solve the Schrödinger equation at the 

boundary points and (but does solve everywhere else). The wavenumber above is 

restricted to certain, specific values given by 

 

where is the size of the box. Negative values of are neglected, since they give wave functions 

identical to the positive solutions except for a physically unimportant sign change. Here one 

sees that only a discrete set of energy values and wavenumbers k are allowed for the particle 

2.7 Energy levels 
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The energy of a particle in a box (black circles) and a free particle (grey line) both depend upon 

wavenumber in the same way. However, the particle in a box may only have certain, discrete energy 

levels. 

The energies which correspond with each of the permitted wavenumbers may be written as 

. 

The energy levels increase with , meaning that high energy levels are separated from each 

other by a greater amount than low energy levels are. The lowest possible energy for the particle 

(its zero-point energy) is found in state 1, which is given by] 

 

The particle, therefore, always has a positive energy. This contrasts with classical systems, where 

the particle can have zero energy by resting motionlessly. This can be explained in terms of the 

uncertainty principle, which states that the product of the uncertainties in the position and 

momentum of a particle is limited by 

 

It can be shown that the uncertainty in the position of the particle is proportional to the width of 

the box. Thus, the uncertainty in momentum is roughly inversely proportional to the width of the 

box The kinetic energy of a particle is given by , and hence the minimum 

kinetic energy of the particle in a box is inversely proportional to the mass and the square of the 

well width, in qualitative agreement with the calculation above.  

2.8 Position and momentum 

In classical physics, the particle can be detected anywhere in the box with equal probability. In 

quantum mechanics, however, the probability density for finding a particle at a given position is 

derived from the wavefuntion as For the particle in a box, the probability 

density for finding the particle at a given position depends upon its state, and is given by 
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Thus, for any value of n greater than one, there are regions within the box for which , 

indicating that spatial nodes exist at which the particle cannot be found. 

In quantum mechanics, the average, or expectation value of the position of a particle is given by 

 

For the steady state particle in a box, it can be shown that the average position is always 

, regardless of the state of the particle. For a superposition of states, the expectation 

value of the position will change based on the cross term which is proportional to . 

The variance in the position is a measure of the uncertainty in position of the particle: 

 

The probability density for finding a particle with a given momentum is derived from the 

wavefuntion as . As with position, the probability density for finding the 

particle at a given momentum depends upon its state, and is given by 

 

where, again, . The expectation value for the momentum is then calculated to be zero, 

and the variance in the momentum is calculated to be: 

 

The uncertainties in position and momentum (  and ) are defined as being equal to the 

square root of their respective variances, so that: 

 

This product increases with increasing n, having a minimum value for n=1. The value of this 

product for n=1 is about equal to 0.568 which obeys the Heisenberg uncertainty principle, 

which states that the product will be greater than or equal to  
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The idealized situation of a particle in a box with infinitely high walls is an application of the 

Schrodinger equation which yields some insights into particle confinement. The wave function 

must be zero at the walls and the solution for the wave function yields just sine waves.  

The longest wavelength is  

 

 

and the higher modes have wavelengths given by 

 

 

When this is substituted into the DeBroglie relationship it yields momentum 

 

When the momentum expression for the particle in a box  

 

 

is used to calculate the energy associated with the particle  

 

 

Though oversimplified, this indicates some important things about bound states for particles: 
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1. The energies are quantized and can be characterized by a quantum number n 

2. The energy cannot be exactly zero. 

3. The smaller the confinement, the larger the energy required.  

If a particle is confined into a rectangular volume, the same kind of process can be applied to a 

three-dimensional "particle in a box", and the same kind of energy contribution is made from 

each dimension. The energies for a three-dimensional box are 

 

This gives a more physically realistic expression for the available energies for contained 

particles. This expression is used in determining the density of possible energy states for 

electrons in solids.  

Chapter Three Statistical Thermodynamics 

3.1 Introduction 

All that we have learnt in thermodynamics are the behavior of macroscopic systems, either from 

a scientific or engineering viewpoint. Examples of such systems might include a piston–cylinder 

assembly, a heat exchanger, or a battery. Typically, the analysis of macroscopic systems uses 

conservation or field equations related to classical mechanics, thermodynamics, or 

electromagnetics. One have learnt to understand that classical thermodynamics 

is inherently limited in its ability to explain the behavior of even the simplest thermodynamic 

system. The reason for this deficiency rests with its inadequate treatment of the atomic behavior 

underlying the gaseous, liquid, or solid states of matter. Without proper consideration of 

constituent microscopic systems, such as a single atom or molecule, it is impossible for the 

practitioner to understand fully the evaluation of thermodynamic properties, the meaning of 

thermodynamic equilibrium, or the influence of temperature on transport properties such as the 

thermal conductivity or viscosity. Developing this elementary viewpoint is the purpose of a 

course in statistical thermodynamics. As you will see, such fundamental understanding is also 

the basis for creative applications of classical thermodynamics to macroscopic devices. 

 

3.2 A Classification Scheme for Statistical Thermodynamics 

The framework of statistical thermodynamics can be divided into three conceptual themes. 

The first is equilibrium statistical thermodynamics with a focus on independent particles. 

Here, we assume no intermolecular interactions among the particles of interest; the resulting 

simplicity permits excellent a priori calculations of macroscopic behavior. Examples include the 

ideal gas, the pure crystalline metal, and blackbody radiation. The second theme is again 

equilibrium statistical thermodynamics, but now with a focus on dependent particles. In this case, 

intermolecular interactions dominate as, for example, with real gases, liquids, and polymers. 

Typically, such intermolecular interactions become important only at higher densities; because of 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/eedens.html#c1


the resulting mathematical difficulties, calculations of macroscopic properties often require semi-

empirical procedures. 

The third conceptual theme might be labeled nonequilibrium statistical thermodynamics. 

Here, we are concerned with the dynamic behavior that arises when shifting between 

different equilibrium states of a macroscopic system. Although time-correlation methods 

presently constitute an active research program within nonequilibrium statistical 

thermodynamics, the focus is on those dynamic processes that can be linked to basic 

kinetic theory. As such, we will explore the molecular behavior underlying macroscopic 

transport of momentum, energy, and mass. In this way, kinetic theory can provide a deeper 

understanding of the principles of fluid mechanics, heat transfer, and molecular diffusion. 

Nonequilibrium statistical thermodynamics also provides an important path for the understanding 

and modeling of chemical kinetics, specifically, the rates of elementary chemical reactions. 

Statistical thermodynamics will allow us to calculate from atomic and molecular properties the 

thermodynamic properties of ideal gases, real gases, and metals. Examples might include 

equations of state, measurable properties such as specific heats and the internal energy, and also 

ephemeral properties such as the entropy and free energies. The beauty of statistical 

thermodynamics is that it reveals our natural world. It will allow one to appreciate the limitations 

of classical thermodynamics, in particular, the first, second, and third laws of thermodynamics. 

 

 

Chapter 4 Probability and Statistics 
In preparation for our study of statistical thermodynamics, we first review some fundamental 

notions of probability theory, with a special focus on those statistical concepts relevant 

to atomic and molecular systems.  

 

4.1 Probability: Definitions and Basic Concepts 

Probability theory is concerned with predicting statistical outcomes. Simple examples of 

such outcomes include observing a head or tail when tossing a coin, or obtaining the 

numbers 1, 2, 3, 4, 5, or 6 when throwing a die. For a fairly-weighted coin, we would, of 

course, expect to see a head for 1/2 of a large number of tosses; similarly, using a fairly weighted 

die, we would expect to get a four for 1/6 of all throws. We can then say that 

the probability of observing a head on one toss of a fairly-weighted coin is 1/2 and that 

for obtaining a four on one throw of a fairly-weighted die is 1/6. This heuristic notion of 

probability can be given mathematical formality via the following definition: 

Given Ns mutually exclusive, equally likely points in sample space, with Ne of these 

points corresponding to the random event A, then the probability  

 

P(A) = Ne/Ns . 

Here, sample space designates the available Ns occurrences while random event A denotes 

the subset of sample space given by Ne ≤ Ns. The phrase mutually exclusive indicates 

that no two outcomes can occur simultaneously in a single sample space; this criterion is 

obviously required if we are to convert our heuristic understanding of chance to a well defined 

mathematical probability. 

As a further example, for a standard deck of playing cards, we have 52 points in sample 

space, of which four represent aces. Hence, the probability of drawing a single ace from a 

well-mixed deck is  



 

P(A)=4/52=1/13,  

where the event A designates the random drawing of an ace. Visually, the relation between event 

A and sample space can be described by a so-called Venn diagram, as shown in Fig. 4.1. Here, 

sample points resulting in event A fall within the area A, while those not resulting in event A fall 

elsewhere in the surrounding box, whose total area represents the entire sample space. Hence, 

assuming a uniform point density, we find that the ratio of the cross-hatched area to the total area 

in Fig. 4.1 provides a visual representation of P(A). Similarly, from the viewpoint of set theory, 

we observe that for a fairly-weighted die the random event of obtaining an even number E = {2, 

4, 6} from within the entire sample space S = {1, 2, 3, 4, 5, 6} clearly occurs with probability 

P(A) = 1/2. 

 

 

 

 

 

 

 

Our notion of probability becomes more complicated if we consider two different 

random events, A and B, which can both occur within a given sample space. On this 

basis, we may define the compound probability, P(AB), which represents events A and B, 

                   

                                                                 

 

Figure 4.1 Venn diagram representing that portion of sample space which corresponds to random 

event A. 

 

and also the total probability, P(A+ B), which represents events A or B (including both). From 

the viewpoint of set theory, P(AB) is called the intersection of A and B(A∩ B), while 

P(A+ B) is labeled the union of A and B (A∪ B). Pictorial displays of the (a) intersection 

and (b) union of A and B are given by the two Venn diagrams shown in Fig. 4.2. If the events A 

and B are mutually exclusive, a single trial by definition permits no overlap in sample space.  

 

 

 

 

 

 

 

 

Figure 2.2 Venn diagrams representing (a) P(AB) and (b) P(A + B). 

 

 

Therefore, P(AB) = 0 so that)   

 

P(A+ B) = P(A) + P(B), (4.1) 

                                                       B                                                              

           A                

                                                                                                      

             A                    B                                                                                                            A           B 



 

as displayed by the Venn diagram of Fig. 4.3(a). As an example, the probability of picking a king 

(K) or a queen (Q) from a single deck of playing cards is given by the total probability P(K + Q) 

= P(K) + P(Q) = 2/13. In comparison, the probability of picking a king from one deck and a 

queen from a different deck is P(KQ) = (1/13)2. In the latter case, we have two different sample 

spaces, as indicated by the Venn diagram of Fig. 4.3(b), so that the events are now mutually 

independent. Hence, in general, the compound probability becomes: 

 

P(AB) = P(A) · P(B). (4.2) 

 

In summary, Eq. (4.1) defines two mutually exclusive events within a single sample space, 

while Eq. (4.2) defines two mutually independent events within two different sample 

 

 

 

 

  

(a)                                                                                                                             (b) 

Figure 2.3 Venn diagrams describing (a) mutually exclusive and (b) mutually independent events. 

spaces. Equations (2.1) and (2.2) can, of course, be extended to more than two events, 

e.g., P(A+ B+ C) = P(A) + P(B) + P(C) Mutual Exclusivity (4.3) 

       P(ABC) = P(A) · P(B) · P(C) Mutual Independence. (4.4) 
 

EXAMPLE 4.1 

Five people are arranged in a row at random. What are the probabilities that two particular 

people will be (a) next to each other and (b) separated by one person between them? 

 

Solution 

We first recognize that randomly arranging two previously chosen people with three other 

people in a row is no different than randomly choosing these same two people after the 

arrangement. Because choosing two people at random from among five available people 

represents two mutually independent events, the compound probability with no further 

information is (1/5)(1/4). However, if we now specify that these two people are either next 

to each other or one person apart, we must account for the fact that there are many ways 

of achieving either specification, each of which will enhance the previously unconstrained 

compound probability. As for many probability analyses, a combination of visual and 

conceptual approaches often constitutes the most fruitful tactic for solving the problem. 

 

(a)Visualization indicates that for five people in a row, four possible pairs of people can 

exist next to each other. Conceptually, the persons comprising each pair can also be switched, 

thus giving eight independent ways of obtaining two people next to each other among five 

people in a row. Hence, the final probability that two people will be next to each other when five 

people are arranged in a row at random must be:  

(1/5)(1/4)(8) = 2/5. 
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(a)                                                                                      (b) 

Possible pairs of people for (a) two people next to each other and (b) two people one 

person apart. 

 

(b) Similarly, for two people separated by another person, a combined visual and conceptual 

analysis gives a final probability of (1/5)(1/4)(3)(2) = 3/10. Here, three pairs of people are 

possible one person apart and the individuals comprising each pair can again be switched. 

Suppose instead that the five people are arranged in a circle. You should be able to convince 

yourself that the probability for two people to be either next to each other or separated 

by another person is now always 1/2. 

 

4.2 Permutations and Combinations 

We now apply probability theory to a sequence of distinguishable objects. Consider, for 

Example, a basket containing four marbles labeled A, B, C, and D, respectively. Our aim is 

to randomly select marbles from the basket without replacement. The first marble chosen can 

be any of four possibilities, the second can be any of the three remaining possibilities, the 

third chosen must be one of the two remaining possibilities, and the fourth can only be one 

possibility. Hence, the number of ways that the four sequential but independent choices can be 

made must be: 

4 · 3 · 2 · 1 = 24. 

 

These 24 possible ways of randomly selecting the four original marbles can be taken as the 

number of possible arrangements or permutations of any single sequence of the four marbles, 

e.g., ACDB. If, on the other hand, the marbles were not labeled, then the 24 possible 

rearrangements would be irrelevant as the marbles would be indistinguishable. In this case, the 

24 permutations would become only one combination. Moreover, only a single collection or 

combination of the four marbles would exist, even if labeled, if we simply chose to disregard any 

ordering of the random objects. 

This distinction between permutations and combinations can be pursued further by considering 

the number of ways by which we can choose M items from a sample of N available objects 

without replacement, in one case including and in the other case excluding the effect of labeling 

or ordering. The objects, for example, could be M marbles chosen from a basket containing N 

marbles, or M cards chosen from a deck of N cards. Following the procedure outlined in the 

previous paragraph, the number of permutations is P(N,M) = N(N − 1) · · · (N − M+ 1) or 

P(N,M) = N! / (N − M)! , (4.5) 

 

which is defined as the number of permutations of N objects taken M at a time. We note, 

by the way, that P(N,M) = N! When M = N, so that Eq. (4.5) requires that we define 

0! = 1. 



In comparison, the number of combinations represents all the different subsets containing M 

items that can be sampled from N distinct objects. Here, the particular arrangement of M objects 

within a subset is irrelevant; thus, the number of combinations can be obtained from the number 

of permutations of Eq. (2.5) via division by the number of permutations, M!, for the subset of M 

distinct objects. Hence,  

C(N,M) = P(N,M)/M! or C(N,M) = N!/ (N − M)! M!  (4.6) 

which is defined as the number of combinations of N objects taken M at a time. We note that 

C(N,M) can also be interpreted as the number of different arrangements of N objects when M of 

these objects are of one distinct type and (N − M) are of a second type. This is the interpretation 

of C(N,M). 

  

EXAMPLE 2.2 

You wish to choose three marbles at random from an urn containing four marbles labeled 

A, B, C, and D. 

(a) Determine the number of permutations and combinations for the above scenario. 

(b) Identify explicitly each combination and permutation for the three chosen marbles. 

Solution 

(a) The number of permutations when letting N = 4 and M = 3 is 

P(N,M) = N!/ (N − M)! = 4!/1! = 24. 

Similarly, the number of combinations is:  

C(N,M) = N!/(N − M)! M! = 4!/1! 3! = 4. 

(b) The four combinations are ABC,ABD, ACD, and BCD. Each of the four combinations 

can be permuted 3! = 6 ways, for a total of 24 permutations. Consider, for example, 

the ABC combination, which offers the following six permutations: ABC, ACB, BAC, 

BCA, CAB, and CBA. 

 

4.3   Probability Distributions: Discrete and Continuous 

You are no doubt familiar with the concept of a grade distribution as a way of reporting 

results for a course examination. Consider, for example, the simplified distribution of 

test scores shown for a class of 20 students in Table 2.1. If we convert the number of 

students associated with each test score to an appropriate fraction of students, we obtain 

 

Table 2.1 Simplified grade distribution 

Number of    Fraction of Students Test scores 

students 

1                    0.05                            100 

2                    0.10                             90 

4                   0.20                              80 

6                   0.30                              70 

4                   0.20                              60 

2                   0.10                              50 

1                   0.05                              40 
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Fraction of Students 

                                                                                                                     



 

                                  0.15 

 

 

 

                                    0.00 

                                            30      40     50      60      70      80         90      100          110 

 

Figure 4.4 Histogram representing Table 2.1. 

  

the histogram shown in Fig. 4.4. This histogram is an example of a discrete probability 

distribution, for which 

                                 Ʃ P(xi ) = 1. (4.7) 

                                 i 

In other words, the number of students obtaining each grade, xi , has been normalized so 

that the sum over all probabilities or fractional numbers of students, P(xi ), is unity. 

For any discrete distribution, the mean may be defined as 

 x =(xi) ≡ P(xi ) xi (4.8) 

while the variance or mean-square deviation is 

 

σ2 = (xi − x¯)2, (4.9) 

 

where both the overbar and the brackets denote an average or expected value. The square 

root of the variance, σ, is commonly called the standard deviation; it provides a measure 

of the width for the probability distribution. Expanding Eq. (4.9) leads to 

 

σ2 = (x2 -2xi xi  +  x2) 

 

 

 

so that the variance can be expressed as the mean of the square minus the square of the 

mean. Hence, the standard deviation can be written as 

 

σ = x2 − x¯2 (2.10) 

where 

            x2 = (x2
i) = Pi Ʃ(xi ) x2  (4.11) 

We now consider a more realistic distribution of test scores for a group of 400 students 

rather than 20 students. In this case, we might expect Table 2.1 to contain all possible 

integer grades between 40 and 100. Hence, the histogram of Fig. 4.4 would approach a 

more continuous distribution, as displayed by the probability density function, f (x), in 

Fig. 4.5. Normalization would now be given by: 

 

              ʃ f (x)dx = 1  

 

                            f(x)                                                     

 

 

 

       

                              

              dP(x) = f(x)dx 

 

               

                                                             

 



                                              dx                  x 

Figure 2.5 Continuous distribution functions. 

when integrated over all possible values of x. Therefore, the probability density function itself does not represent a 

probability; rather, the probability must be evaluated from knowledge of f (x) via integration. As an example, the 

probability of achieving values of x between a and b would be obtained from 

P(a ≤ x ≤ b) =   ʃab f (x) dx. 

 

4.4 The Binomial Distribution 

The binomial distribution is of fundamental importance in probability theory, as it describes 

quite simply any sequence of experiments having two possible outcomes. As an example, 

consider the tossing of an unfairly-weighted coin, for which the two outcomes are either 

a head or tail. Suppose that the probability of obtaining a head is p, while that for a tail is 

q = 1 − p. Now, for a sequence of N tosses, the probability of M heads and (N − M) tails 

in a particular sequence is pMqN−M, as each toss is an independent event in a new sample 

space. However, because M heads and (N − M) tails can be achieved in more than one 

way, we must determine the number of possible sequences of heads and tails if we wish to 

determine the final probability. But the number of possible sequences is just the number 

of ways N total objects can be arranged into M identical objects of one type and (N − M) 

identical objects of a second type. This description defines the number of combinations of 

N objects taken M at a time, C(N,M), as specified by Eq. (4.6). Hence, the probability of 

tossing M heads and (N − M) tails regardless of order becomes 

B(M) = C(N,M)pMqN−M 

or 

B(M) = N!/M! (N − M)! (pM(1 − p)N−M), (4.14) 

where B(M) represents the well-known binomial probability distribution. This discrete 

distribution can be interpreted in many different ways. For example, the probabilities p 

and (1 − p) can indicate the chances of success and failure or right and left steps of a 

random walk, as well as of heads and tails in the tossing of a coin. Therefore, in general, N 

always represents the total number of repeated trials in any binary sequence. 

EXAMPLE 4.3 

Determine the probability that, in six throws of a fairly-weighted die, the side with four 

pips will land upright at least twice. 

Solution 

The probability of landing a four on any throw is 1/6 (success) and thus the probability of 

not landing a four on any throw is 5/6 (failure). Consequently, the probability that four 

pips will not appear (M = 0) in six throws (N = 6) must be 

B(0) = 6!/0! (6 − 0)!(1/6)0(5/6)6 =  0.335. 

Similarly, the probability that four pips will appear once (M = 1) in six throws is 

B(1) = 6!/1! (6 − 1)!(1/6)(5/6)5  = 0.402. 

As B(0) and B(1) represent mutually exclusive events, the probability from Eq. (4.3) that 

four pips will appear at least twice in a sequence of six throws must be 

P(M ≥ 2) = 1 − P(M < 2) = 1 − [B(0) + B(1)] 

or 

P(M ≥ 2) = 1 − [0.335 + 0.402] = 1 − 0.737 = 0.263. 

 



4.5 The Poisson Distribution 

 

While the binomial distribution holds for any finite number of repeated trials, physical 

processes involving large numbers of particles, such as in statistical thermodynamics, imply 

N→∞. For such circumstances, the binomial distribution can be simplified to two more 

familiar distributions, one discrete and the other continuous. We now proceed with these 

simplifications by first assuming p→ 0, which we will find leads to the Poisson distribution. 

This distribution is particularly applicable to photon-counting processes, for which the total 

number of photons counted, N→∞, while the possibility of observing any single photon, 

p→ 0. 

We begin by expressing the binomial distribution, Eq. (4.14), as : 

 

B(M) = N(N − 1) · · · (N − M+ 1)/M!( μ/N)M(1 − p)N−M  (4.14) 

, 

where the mean μ ≡ M = Np from Eq. (4.15). We then have 

lim  B(M) = NM// M!( μ/N)M(1 − p)N = μM/M!((1 − p)μ/p. (4.15), 

 

From the fundamental mathematical definition of the quantity, e = 2.71828, it can be 

shown that lim(1 − p)1/p = e−1. 

                  p→0 

Hence, for N→∞ and p→ 0, the binomial distribution becomes the discrete Poisson 

distribution, 

 

P(M) = e−μ μM/M!  (4.15b) 

 

Because P(M) is based on B(M), the standard deviation for the Poisson distribution 

can be obtained from Eq. 4.16) by invoking p→ 0, thus giving 

σ = Np =√μ,               (4.18) 

as can also be demonstrated from direct application of Eq. (4.10).We thus find, 

from Eq. (4.18), that a greater mean value implies a broader range of expected outcomes 

when the physical system of interest follows Poisson statistics. Employing Eq. (4.15), we 

also note that P(M+ 1)/P(M)= μ/(M+ 1) 

, 

which indicates a rapid drop in probability for the Poisson distribution as M→∞. Nevertheless, 

the Poisson distribution generally remains a good approximation to the binomial 

distribution for μ = Np <<√N. 

 

4.6 Euler–Maclaurin Summation Formula 
It often proves convenient in statistical mechanics to approximate the summation of a function over a discrete 

variable by an analogous integration over a continuous variable. The accuracy of this procedure can be assessed by 

implementation of the Euler–Maclaurin summation formula. Consider a function f (n) that changes only gradually 

with increasing integer values, 0 ≤ n≤∞. If, in addition, 

lim f (n) = 0 

n→∞ 

, 
we may show via contour integration in the complex plane (Hecht, 1990) that                                                                                           

∞  



Ʃf (n) = ʃ∞ f (n) dn + ½ f(0) 1/12f’(0)  + 1/720f’’’0) +……… 

n=0      0 

where f (0) is f (n) evaluated at n = 0, f’ (0) is its first derivative evaluated at n = 0, and 

f ‘’’(0) is its third derivative evaluated at n = 0. 

 

4.7 The Gaussian Distribution. 

When the number of trials N→∞, but p is not small, the binomial distribution becomes the 

continuous Gaussian distribution rather than the discrete Poisson distribution (p→ 0). The 

Gaussian distribution is particularly applicable to various diffusive processes, for which the total 

number of molecules N→∞. 

 

The familiar form of the continuous Gaussian distribution, 

G(z) = 1/ √2πσexp−z2/2          (4.16) 

.where z = (x − μ)/σ 

Note that G(z) is symmetrical about z because of its dependence on z2, unlike many cases for the 

discrete binomial or Poisson distributions. Equation (4.16) also indicates that the peak value for 

G(z) is always 1/√2πσ. In general, the Gaussian distribution can be shown to be a satisfactory 

approximation to the binomial distribution if both Np ≥ 5 and Nq ≥ 5. 

 

4.8 Combinatorial Analysis for Statistical Thermodynamics 

Quantum mechanics ultimately predicts discrete energy levels for molecular systems. As we will 

see later, each such level is actually composed of a finite number of allowed energy states. The 

number of energy states per energy level is called the degeneracy. For our purposes, we can 

model each energy level of energy, ej, as an independent bookshelf holding a specified number 

of baskets equal to the value of the degeneracy, gj , as shown in Figure 4.1 below The height of 

each individual shelf represents its energy. The equivalent containers denote potential storage 

locations for the molecules of the thermodynamic system at each energy level. For statistical 

purposes, we will eventually need to know the distribution of molecules among these energy 

states,. We now move toward this 

goal by considering the number of ways that N objects (molecules) can be placed in M containers 

(energy states) on a single shelf (energy level). Before we can make such combinatorial 

calculations, however, we must introduce two other important features of quantum mechanics 

 

 

Ej  --------------------------------------------------------------- 

 

 

 

Eo --------------------------------------------------------------- 

 

Figure 4.1 Bookshelf model for energy level Ej with degeneracy gj = 4. 

 

 

 

 



Chapter 5 Essential Concepts from Quantum Mechanics 

 

In preparation for our study of elementary statistical thermodynamics, we recapitulate and 

expand somewhat on those essential notions from quantum mechanics. To avoid unnecessary 

complications, the background needed to derive or fully understand the following four 

conceptual presumptions is discussed. The first concept is that energy for a single atom or 

molecule is always quantized, as implied by the three discrete energy levels designated ε0, ε1, 

and ε2 in the energy-level diagram of Fig. 5.1. As discussed previously, quantization is suggested 

by the discrete lines appearing in both atomic and molecular spectra. The second essential 

concept is that the available energy levels are not necessarily equally probable. This statement is 

in accord with the different number of energy states associated with each energy level, as 

described by the degeneracies, g0, g1, and g2, in Fig. 5.1.We will find out that each energy or 

quantum state is defined by its own unique set of so-called quantum numbers. 

This unique specification at either the atomic or molecular level suggests that each energy 

state, rather than each energy level, can be considered equally likely 
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Figure 5.1 Example of Energy diagram 

 

The third essential concept is that most particles are indistinguishable rather than distinguishable 

owing to the probabilistic nature of matter at atomic dimensions. From a different perspective, 

the uncertainty principle suggests that molecules can be counted but not discerned because their 

momentum and position cannot be specified simultaneously. If, however, atoms are aligned 

structurally either within or on the surface of a crystalline material, for example, then 

discernment of particular atoms becomes possible, thus making the particles distinguishable. The 

fourth and final concept concerns the possible number of particles permitted per energy state. For 

some particles, such as protons and electrons, only one particle is allowed per energy state. Other 

particles, such as photons, display no limit on the number allowed per energy state. For 

simplicity, the former particles are called fermions while the latter are called bosons. In 

summary, then, the crucial information needed from quantum mechanics to make statistical 

thermodynamic calculations is the energy, ε j , and the degeneracy, gj , corresponding to the jth 

energy level of the relevant atom or molecule. In addition, for statistical purposes, we must know 

whether the particle of interest is (1) distinguishable or indistinguishable and (2) fermion or 

boson 

 

5.2 The Ensemble Method of Statistical Thermodynamics 

The most general statistical procedure for calculating thermodynamic properties is called 

the ensemble method, as developed by the American engineer and scientist J. Willard 

Gibbs (1839–1903). The Gibbs approach works for both dependent and independent particles, 



thus making it very powerful for realistic thermodynamic systems. The more restrictive 

Maxwell–Boltzmann (M–B) method, which presumes an isolated system of independent 

particles is more suitable to model as if they were composed of independent particles. Examples 

include not only the ideal gas, but also electrons, radiation, and the crystalline solid. In addition, 

pedagogically, the M–B method is more intuitive and thus it furnishes a necessary foundation for 

fully appreciating the rigorous beauty of the Gibbs method. 

 

“An ensemble is a theoretical collection of a very large number η of systems, each of which 

replicates the macroscopic thermodynamic system under investigation.” 

 

There are three main types of ensembles, depending on what type of macroscopic system is 

being replicated to create the ensemble. The microcanonical ensemble is composed of η isolated 

systems (N, V,U), for which the total number of particles, N, the volume, V, and the internal 

energy, U, are the replicated thermodynamic properties. The canonical ensemble is composed of 

η closed, isothermal systems (N, V, T), for which the total number of particles, the volume, and 

the temperature, T, are the independent thermodynamic parameters. Finally, the grand canonical 

ensemble is composed of η open, isothermal systems (μ, V, T), for which the chemical potential, 

μ, the volume, and the temperature are the constant independent variables. In general, an 

ensemble is really a super system composed of η replicated thermodynamic systems, such as a 

room, a piston–cylinder assembly, or a nozzle. To ensure proper replication, no mass or energy 

can be permitted to cross the overall boundary of the constructed super system. Hence, the entire 

ensemble, no matter what type, must always be isolated 

 

 

 
                                                                    Thermal insulation provides a heat bath of constant 

                                                                                            temperature to ensure isothermal conditions for 

                                                                                            each member of the ensemble                                                                                                            

                                                                                                                         

                                                                                                                                                                  

                                      

                                              

Each replicated macroscopic member of the                                 

ensemble is a closed, isothermal system at                                                                                                                      

constant N, V, and                                                                                                                                                                                                                                                                              

 

 

Figure 5.2 Diagram for the canonical ensemble; the entire ensemble is an isolated super system                                                                                                                  

                       

Fig 5.2 demonstrates the construction of an isolated supersystem for the canonical ensemble. 

We may now link the M–B and Gibbs approaches by first recalling that the M–B 

method requires an isolated system containing N independent particles. If we consider 

the canonical ensemble of Fig. 5.2, this condition can be assured by artificially restricting 

each member of the ensemble to a single particle. In this way, the supersystem of the 

ensemble method becomes the thermodynamic system of the M–B method. The particles 

are guaranteed to be independent because each particle is associated with an independent 

member of the ensemble. The M–B system is guaranteed to be isolated because the constructed 

supersystem is isolated by definition. The result is that the number of independent 

particles, N, becomes equal to the number of replicated macroscopic systems, η. 

     

                                                             

     

              

     



Chapter 6 Statistical Mechanics 

 

Statistical mechanics is devoted to the analysis of the internal motions of a many-particle system 

using probability theory—a subject area that is known as statistical mechanics. 

 

6.1  Specifications of State of Many-Particle System  

 

Let us first consider how we might specify the state of a many-particle system. Consider the 

simplest possible dynamical system, which consists of a single spinless particle moving 

classically in one dimension. Assuming that we know the particle’s equation of motion, the state 

of the system is fully specified once we simultaneously measure the particle’s displacement, q, 

and momentum, p. In principle, if we know q and p then we can calculate the state of the system 

at all subsequent times using the equation of motion. In practice, it is impossible to specify q and 

p exactly, because there is always an intrinsic error in any experimental measurement. Consider 

the time evolution of q and p. This can be visualized by plotting the point (q, p) in the q-p plane. 

This plane is generally known as phase-space. In general, as time progresses, the point (q, p) will 

trace out some very complicated pattern in phase-space. Suppose that we divide phase-space into 

rectangular cells of uniform dimensions δq and δp. Here, δq is the intrinsic error in the position 

measurement, and δp the intrinsic error in the momentum measurement. The area of each cell is  

 

δqδp = h0, (6.1) where h0 is a small constant having the dimensions of angular momentum. 

 

The coordinates q and p can now be conveniently specified by indicating the cell in phase-space 

into which they plot at any given time. This procedure automatically ensures that we do not 

attempt to specify q and p to an accuracy greater than our experimental error, which would 

clearly be pointless. Let us now consider a single spinless particle moving in three dimensions. 

In order to specify the state of the system, we now need to know three q-p pairs: that is, qx-px, 

qy-py, and qz-pz. Incidentally, the number of q-p pairs needed to specify the state of the system 

is usually called the number of degrees of freedom of the system. Thus, a  single particle moving 

in one dimension constitutes a one degree of freedom system, whereas a single particle moving 

in three dimensions constitutes a three degree of freedom system. Consider the time evolution of 

q and p, where q = (qx,qy,qz), et cetera. This can be visualized by plotting the point (q, p) in the 

six-dimensional q-p phase-space. Suppose that we divide the qx-px plane into rectangular cells 

of uniform dimensions δq and δp, and do likewise for the qy-py and qz-pz planes. Here, δq and 

δp are again the intrinsic errors in our measurements of position and momentum, respectively. 

This is equivalent to dividing phase-space up into regular six-dimensional cells of volume h0
3. 

The coordinates q and p can now be conveniently specified by indicating the cell in phase-space 

into which they plot at any given time.  

 

In principle, we can specify the state of the system to arbitrary accuracy, by taking the limit h0 → 

0. In reality, we know from Heisenberg’s uncertainty principle that it is impossible to 

simultaneously measure a coordinate, qi, and its conjugate momentum, pi, to greater accuracy 

than δqi δpi = h/2. Here, h is Planck’s constant divided by 2π. This implies that 

 

h0 ≥ h/2. (6.2) 

 



In other words, the uncertainty principlesets a lower limit on how finely we can chop up classical 

phase-space. In quantum mechanics, we can specify the state of the system by giving its 

wavefunction at timet,  

 

ψ(q1,···,qf, s1,···, sg,t), (6.3) 

 

where f is the number of translational degrees of freedom and g the number of internal (e.g.spin) 

degrees of freedom. For instance, if the system consists of N spin-one-half particles then there 

will be 3N translational degrees of freedom, and N spin degrees of freedom 

(becausethespinofeachparticlecaneitherbedirectedupordownalongthez-axis). Alternatively, if the 

system is in a stationary state (i.e.an  eigen state of the Hamiltonian) then we can just specify f  g 

quantum numbers. Either way, the future time evolution of the wave function is fully determined 

by Schrodinger’s equation. In reality, this approach is not practical because the Hamiltonian of 

the system is only known approximately. Typically, we are dealing with a system consisting of 

many weakly-interacting particles. We usually know the Hamiltonian for completely non-

interacting particles, but the component of the Hamiltonian associated with particle interactions 

is either impossibly complicated, or not very well known. We can define approximate stationary 

eigenstates using the Hamiltonian for non-interacting particles. The state of the system is then 

specified by the quantum numbers identifying these eigenstates. In the absence of particle 

interactions, if the system starts off in a stationary state then it stays in that state forever, so its 

quantum numbers never change. The interactions allow the system to make transitions between 

different “stationary” states, causing its quantum numbers to change in time. 

 

6.3 H-Theorem 

Consider a system of weakly-interacting particles. In quantum mechanics, we can write the 

Hamiltonian for such a system as  H = H0 + H1, (6.4) 

where H0 is the Hamiltonian for completely non-interacting particles, and H1 a small correction 

due to the particle interactions.  

 

We can define approximate stationary eigenstates of the system using H0.  

 

Thus, H0 Ψr = Er Ψr, (6.5) where the index r labels a state of energy Er and eigen state Ψr. In 

general, there are many different eigenstates with the same energy—these are called degenerate 

states. (See Section C.10.) For example, consider N non-interacting spin less particles of mass m 

confined in a cubic box of dimension L. According to standard wave-mechanics, the energy 

levels of the ith particle are given by  

ei = h2π2/ 2mL2 (n 1i
2 + n2i

2 + n3 
2

i), (6.6) 

where n1i, n2i, andn3i are three (positive integer) quantum numbers.  

 

The overall energy of the system is the sum of the energies of the individual particles, so that for 

a general state r,  

Er = ∑ ei,. (6.7)  

        i=1,N 

 



The overall state of the system is thus specified by 3N quantum numbers(i.e.three quantum 

numbers per particle). There are clearly very many different arrangements of these quantum 

numbers that give the same overall energy.  

 

Consider, now, a statistical ensemble of systems made up of weakly-interacting particles. 

Suppose that this ensemble is initially very far from equilibrium. For instance, the systems in the 

ensemble might only be distributed over a very small subset of their accessible states. If each 

system starts off in a particular stationary state (i.e., with a particular set of quantum numbers) 

then, in the absence of particle interactions, it will remain in that state forever. Hence, the 

ensemble will always stay far from equilibrium, and the principle of equal apriori probabilities 

will never be applicable. In reality, particle interactions cause each system in the ensemble to 

make transitions between its accessible “stationary” states. This allows the overall state of the 

ensemble to change in time. 

 

Small interactions between particles cause transitions between the approximate stationary states 

of the system. Thus, there exists some transition probability per unit time, Wrs, that a system 

originally in state r ends up in state, s, as a result of these interactions. Likewise, there exists a 

probability per unit time, Wsr, that a system in state, s, makes a transition to state r. These 

transition probabilities are meaningful in quantum mechanics provided that the particle 

interaction strength is sufficiently small, there is an early continuous distribution of accessible 

energy levels, and we consider time intervals that are not too small. These conditions are easily 

satisfied for the types of systems usually analyzed via statistical mechanics (e.g., nearly-ideal 

gases). One important conclusion of quantum mechanics is that the forward and backward 

transition probabilities between two states are the same, so that Wrs = Wsr 

 

6.4 Relaxation Time 

The H-theorem guarantees that an isolated many-particle system will eventually reach an 

equilibrium state, irrespective of its initial state. The typical time required for this process to take 

place is called the relaxation time, and depends, in detail, on the nature of the inter-particle 

interactions. The principle of equal a priori probabilities is only valid for equilibrium states. It 

follows that we can only safely apply this principle to systems that have remained undisturbed 

for many relaxation times since they were setup, or last interacted with the outside world. The 

relaxation time for the air in a typical classroom is very much less than one second. This suggests 

that such air is probably in equilibrium most of the time, and should, therefore, be governed by 

the principle of equal a priori probabilities. In fact, this is known to be the case. Consider another 

example. Our galaxy, the “Milky Way,” is an isolated dynamical system made up of about 1011 

stars. In fact, it can be thought of as a self-gravitating “gas” of stars. At first sight, the Milky 

Way would seem to be an ideal system on which to test out the ideas of statistical mechanics. 

Stars in the Milky Way interact via occasional near-miss events in which they exchange energy 

and momentum. Actual collisions are very rare indeed. Unfortunately, such interactions take 

place very infrequently, because there is a lot of empty space between the stars. The best 

estimate for the relaxation time of the Milky Way is about 1013 years. This should be compared 

with the estimated age of the Milky Way, which is only about 1010 years. It is clear that, despite 

its great age, the Milky Way has not been around long enough to reach an equilibrium state. This 

suggests that the principle of equal a priori probabilities cannot be used to describe stellar 



dynamics. Not surprisingly, the observed velocity distribution of the stars in the vicinity of the 

Sun is not governed by this principle. 

 

6.5 Reversibility and Irreversibility 

 

Previously, we mentioned that, on a microscopic level, the laws of physics are in variant under 

time reversal. In other words, microscopic phenomena look physically plausible when run in 

reverse. We usually say that these phenomena are reversible. Does this imply that macroscopic 

phenomena are also reversible? Consider an isolated many-particle system that starts off far from 

equilibrium. According to the H-theorem, it will evolve towards equilibrium and as it does so, 

the macroscopic quantity H will decrease. But, if we run this process backwards in time then the 

system will appear to evolve away from equilibrium, and the quantity H will increase. This type 

of behavior is not physical because it violates the H-theorem. In other words, if we saw a film of 

a macroscopic process then we could very easily tell if it was being run backwards. For instance, 

suppose that by some miracle, we were able to move all of the oxygen molecules in the air in 

some classroom to one side of the room, and all of the nitrogen molecules to the opposite side. 

We would not expect this state to persist for very long. Pretty soon the oxygen and nitrogen 

molecules would start to intermingle, and this process would continue until they were thoroughly 

mixed together throughout the room. This, of course, is the equilibrium state for air. In reverse, 

this process appears completely unphysical. We would start off from perfectly normal air, and 

suddenly, for no good reason, the air’s constituent oxygen and nitrogen molecules would 

appear to separate, and move to opposite sides of the room. This scenario is not impossible, but, 

from everything we know about the world around us, it is spectacularly unlikely. We conclude, 

therefore, that macroscopic phenomena are generally irreversible, because they appear 

unphysical when run in reverse. How does the irreversibility of macroscopic phenomena arise? It 

certainly does not come from the fundamental laws of physics, because these laws are all 

reversible. In the previous example, the oxygen and nitrogen molecules intermingled by 

continually scattering off one another. Each individual scattering event would look perfectly 

reasonable viewed in reverse. However, the net result of this scattering event appears unphysical 

when run backwards. How can we obtain an irreversible process from the combined effects of 

very many reversible processes? This is a vitally important question. Unfortunately, we are not 

quite at the stage where we can formulate a convincing answer. Note, however, that the essential 

irreversibility of macroscopic phenomena is one of the key results of statistical thermodynamics. 

 

 

Chapter 7 Heat and Work 

 

7.1 Brief History of Heat and Work 

 

Antoine Lavoisier 

 

In 1789, the French scientist Antoine Lavoisier published a famous treatise on chemistry which, 

among other things, demolished the then prevalent theory of combustion. This theory, known to 

history as the phlogiston theory, is so extraordinary stupid that it is not even worth describing. In 

place of phlogiston theory, Lavoisier proposed the first reasonably sensible scientific 

interpretation of heat. Lavoisier pictured heat as an invisible, tasteless, odorless, weightless fluid, 



which he called calorific fluid. He postulated that hot bodies contain more of this fluid than cold 

bodies. Furthermore, he suggested that the constituent particles of calorific fluid repel one 

another, causing heat to flow spontaneously from hot to cold bodies when they are placed in 

thermal contact. The modern interpretation of heat is, or course, somewhat different to 

Lavoisier’s calorific theory. Nevertheless, there is an important subset of problems, involving 

heat flow, for which Lavoisier’s approach is rather useful. These problems often crop up as 

examination questions. For example: “A clean dry copper calorimeter contains 100 grams of 

water at 30◦ degrees centigrade. A 10 gram block of copper heated to 60◦ centigrade is added. 

What is the final temperature of the mixture?”. How do we approach this type of problem? 

According to Lavoisier’s theory, there is an analogy between heat flow and incompressible fluid 

flow under gravity. The same volume of liquid added to containers of different (uniform)cross-

sectional area fills them to different heights. If the volume is V, and the cross-sectional area is A, 

then the height is h = V/A. In a similar manner, the same quantity of heat added to different 

bodies causes them to rise to different temperatures. If Q is the heat and θ is the (absolute) 

temperature then θ = Q/C, where the constant C is termed the heat capacity. [This is a somewhat 

oversimplified example. In general, the heat capacity is a function of temperature, so that C = 

C(θ).] If two containers, filled to different heights, with a free-flowing incompressible fluid are 

connected together at the bottom, via a small pipe, then fluid will flow under gravity, from one to 

the other, until the two heights are the same. The final height is easily calculated by equating the 

total fluid volume in the initial and final states. Thus, 

 

h1 A1 + h2 A2 = hA 1 + hA 2, (7.1) 

giving h = h1 A1 + h2 A2 A1 + A2  (7.2) 

Here, h1 andh2 are the initial heights in the two containers, A1 and A2 are the corresponding 

crosssectional areas, and his the final height. Likewise, if two bodies, initially at different 

temperatures, are brought into thermal contact then heat will flow, from one to the other, until the 

two temperatures are the same. The final temperature is calculated by equating the total heat in 

the initial and final states. Thus, θ1C1 + θ2C2 = θC1 + θC2, (4.3) giving 

 θ =  θ1C1 + θ2C2 C1 +C2 

, (7.4) 

 and fluid flow works because, in Lavoisier’s theory, heat is a conserved quantity, just like the 

volume of an incompressible fluid. In fact, Lavoisier postulated that heat was an element. 

Notethatatomswerethoughttobeindestructiblebeforenuclearreactions were discovered, so the total 

amount of each element in the cosmos was assumed to be a constant. Thus, if Lavoisier had 

cared to formulate a law of thermodynamics from his calorific theory then he would have said 

that the total amount of heat in the universe as a constant. In 1798, Benjamin Thompson, an 

Englishman who spent his early years in pre-revolutionary America, was minister for war and 

police in the German state of Bavaria. One of his jobs was to oversee the boring of cannons in 

the state arsenal. Thompson was struck by the enormous, and seemingly inexhaustible, amount 

of heat generated in this process. He simply could not understand where all this heat was coming 

from. According to Lavoisier’s calorific theory, the heat must flow into the cannon from its 

immediate surroundings, which should, therefore, become colder. The flow should also 

eventually cease when all of the available heat has been extracted. In fact, Thompson observed 

that the surroundings of the cannon got hotter, not colder, and that the heating process continued 

unabated as long as the boring machine was operating. Thompson postulated that some of the 

mechanical work done on the cannon by the boring machine was being converted into heat. At 



the time, this was quite a revolutionary concept, and most people were not ready to accept it. 

This is somewhat surprising, because, by the end of the eighteenth century, the conversion of 

heat into work, by steam engines, was quite commonplace. Nevertheless, the conversion of work 

intoheatdidnotgainbroadacceptanceuntil1849, when an English physicist called James Prescott 

Joule published the results of a long and painstaking series of experiments. Joule confirmed that 

work could indeed be converted into heat. Moreover, he found that the same amount of work 

always generates the same quantity of heat. This is true regardless of the nature of the work (e.g., 

mechanical, electrical, et cetera). Joule was able to formulate what became known as the work 

equivalent of heat. Namely, that 1 newton meter of work is equivalent to 0.241 calories of heat. 

A calorie is the amount of heat required to raise the temperature of 1 gram of water by 1 degree 

centigrade. Nowadays, we measure both heat and work using the same units, so that one newton 

meter, or joule, of work is equivalent to one joule of heat. In 1850, the German   physicist 

Clausius correctly postulated that the essential conserved quantity is neither heat nor work, but 

some combination of the two which quickly became known as energy, from the Greek Energeia 

meaning “activity” or “action.  ” According to Clausius, the change in the internal energy ofa 

macroscopic body can be written 

∆E = Q−W, (4.5) 

where Q is the heat absorbed from the surroundings, and W is the work done on the 

surroundings. This relation is known as the first law of thermodynamics. 

 

 

7,2 Microscopic Interpretation of Heat and Work 

 

Consider a macroscopic system, A, that is known to be in a given macrostate. To be more exact, 

consider an ensemble of similar macroscopic systems, A,  where each system in the ensemble is 

in one of the many microstates consistent with the given macrostate. There are two 

fundamentally different ways in which the average energy of A can change due to interaction 

with its surroundings. If the external parameters of the system remain constant then the 

interaction is termed a purely thermal interaction. Any change in the average energy of the 

system is attributed to an exchange of heat with its environment. Thus, ∆E = Q, (4.7) where Q is 

theheat absorbed by the system. On a microscopic level,the energies oftheindividual microstates 

are unaffected by the absorption of heat. In fact, it is the distributionof the systems in the 

ensembleoverthevarious microstates that is modified. 

SupposethatthesystemAisthermallyinsulatedfromitsenvironment. Thiscanbeachievedby 

surrounding it by anadiabaticenvelope(i.e.,anenvelopefabricatedoutofamaterialthatisapoor 

conductor of heat, such a fiber glass). Incidentally, the term adiabatic is derived from the Greek 

adiabatos, which means “impassable.” In scientific terminology, an adiabatic process is one in 

whichthereisnoexchangeofheat. ThesystemAisstillcapableofinteractingwithitsenvironment via its 

external parameters. This type of interaction is termed mechanical interaction, and any change in 

the average energy of the system is attributed to work done on it by its surroundings. Thus, ∆E = 

−W, (4.8) 

46 4.4. Quasi-Static Processes 

whereW istheworkdonebythesystemonitsenvironment. Onamicroscopiclevel,theenergyof 

thesystemchanges becausetheenergies oftheindividualmicrostatesare functionsoftheexternal 

parameters. [See Equation (4.6).] Thus, if the external parameters are changed then, in general, 

the energies of all of the systems in the ensemble are modified (because each is in a specific 



microstate). Such a modification usually gives rise to a redistributionof the systems in the 

ensemble overtheaccessiblemicrostates(withoutany heat exchangewiththeenvironment). Clearly, 

from a microscopicviewpoint,performing work on amacroscopic systemis quitea 

complicatedprocess. Nevertheless,macroscopicworkisaquantitythatiseasy 

tomeasureexperimentally. Forinstance, ifthesystem A 

exertsaforceFonitsimmediatesurroundings,andthechangein externalparameters corresponds to a 

displacement x of the center of mass of the system, then the work done by A on its 

surroundingsis simply W = F·x : (4.9) that is, the product of the force and the displacement along 

the line of action of the force. In a general interaction of the system A with its environment there 

is both heat exchange and work performed. We can write Q≡∆E + W, (4.10) which serves as the 

general definition of the absorbed heat Q. (Hence, the equivalence sign.) The 

quantityQissimplythechangeinthemeanenergyofthesystemthatisnotduetothemodification of the 

external parameters. Note that the notion of a quantity of heat has no independent meaning apart 

from Equation (4.10). The mean energy, E, and work performed, W, are both physical 

quantitiesthat can be determined experimentally,whereas Q is merely a derived quantity. 


